DOI: 10.22217/upi.2016.027
State-of-the-art of Australian Bushfire Risk Researches and Its Enlightenment

Zou Zhichong, Leng Hong

Keywords: Australian Bushfires; Natural Disasters Risk; Disaster Risk Vulnerability; Fire Abatement Zone

Abstract:

Natural disasters originally belong to the ecosystem, which usually bring losses due to their inevitable conflicts with urban systems. Adaptive urban planning is based on essential understanding of disaster principles. Adaptive plans can reduce disasters risk and protect lives, properties and livelihoods by avoiding or diminishing the conflicts between natural disasters and urban systems. Australian bushfires are unique in their special characteristics of occurrence, propagation and interactivities with human systems. Relative researches on bushfires and related disciplines provide a necessary theoretical foundation for Australian bushfire adaptive urban planning studies. This paper introduces the state-of-the-art of researches on Australian bushfire laws, urban bushfire risk, and community bushfire vulnerability. The present Australian Capital Territory Bushfire Adaptive plans and the settings of bushfire prone zones, fire management zones and bushfire abatement zones in specific spatial plans are briefly introduced. Multidisciplinary development of Australian bushfire science benefits its adaptive urban planning to bushfires, which is significantly a positive learning example to promote urban planning in China.

Funds:

Brief Info of Author(s):

References:
  • [1] Wikipedia. Bushfires in Australia[EB/OL]. (2017-08-06)[2017-08-15]. https://en.wikipedia.org/wiki/Bushfires_in_Australia
    [2] MCANENEY J, CHEN K, CROMPTON R, et al. Australian bushfire losses: past, present and future[C]. The 4th International Conference on Wildfire, 2007: 13-17.

    [3] MCANENEY J, CHEN K, PITMAN A. 100-Years of Australian bushfire property losses: is the risk significant and is it increasing?[J]. Journal of Environmental Management, 2009, 90(8): 19-22.

    [4] BLANCHI R, LUCAS C, LEONARD J, et al. Meteorological conditions and wildfire-related house loss in Australia[J]. International Journal of Wildland Fire, 2010(19): 914-926.
    [5] DWYER A, ZOPPOU C, NIELSEN O, et al. Quantifying Social Vulnerability: A Methodology for Identifying Those at Risk to Natural Hazards[R]. Commonwealth of Australia, 2004.
    [6] BUXTON M, HAYNES R, MERCER D, et al. Vulnerability to bushfire risk at Melbourne’s urban fringe: the failure of regulatory land use planning[J]. Geography Research, 2011, 49(1): 1-12.
    [7] SOLANGAARACHCHI D, GRIFFIN A L, DOHERTY M D. Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas[J]. Natural Hazards, 2012, 64(2): 1873-1898.
    [8] BRADSTOCK R A, GILL A M, KENNY B J, et al. Bushfire risk at the urban interface estimated from historical weather records : consequences for the use of prescribed fire in the Sydney Region of south-eastern Australia[J]. Journal of Environmental Management, 1998, 52(1): 259-271.
    [9] POTTS K E, BENNETT R M, RAJABIFARD A. Spatially enabled bushfire recovery[J]. GeoJournal, 2013, 78(1): 151-163.
    [10] BLANCHI R, LEONARD J. Property safety[M] // Community Bushfire Safety. CSIRO Publishing, 2008: 77.
    [11] HAMMER R B, RADELOFF V C, FRIED J S, et al. Wildland-urban interface housing growth during the 1990s in California, Oregon, and Washington[J]. International Journal of Wildland Fire, 2007, 16(3): 255-265.
    [12] ROSSI J L, SIMEONI A, MORETTI B, et al. An analytical model based on radiative heating for the determination of safety distances for wildland fires[J]. Fire Safety Journal, 2011, 46(8): 520-527.
    [13] OLORUNTOBA R. Plans never go according to plan: an empirical analysis of challenges to plans during the 2009 Victoria Bushfires[J]. Technological Forecasting & Social Change, 2013, 80(9): 1674-1702.
    [14] BRYANT C. Understanding bushfire: trends in deliberate vegetation fires in Australia[J]. Environmental International, 2008, 34(4): 459-475.
    [15] CHENEY N P. Quantifying bushfires[J]. Mathematical and Computer Modelling, 1990, 13(12): 9-15.
    [16] LEONARD J, BOWDITCH P. Findings of studies of houses damaged by bushfire in Australia[C]. The 3rd International Wildland Fire Conference, 2003: 3-6.
    [17] ZáRATE L, ARNALDOS J, CASAL J. Establishing safety distances for wildland fires[J]. Fire Safety Journal, 2008, 43(8): 565-575.
    [18] BLANCHI R, LEONARD J. Investigation of Bushfire Attack Mechanisms Resulting in House Loss in the ACT Bushfire 2003[R]. CSIRO, 2005.
    [19] REISEN F, BROWN S K, SIMMONDS P, et al. Air Toxics Generated During Chamber Burns of Various Types of Australian Forest Fuels[R]. CSIRO, 2006.
    [20] COOK A, DEVINE E B, WEINSTEIN E P, et al. Respiratory irritants in Australian bushfire smoke: air toxics sampling in a smoke chamber and during prescribed burns[J]. Archives of Environmental Contamination and Toxicology, 2009, 56(3): 380-388.
    [21] KOLBE A, GILCHRIST K L. An extreme bushfire smoke pollution event: health impacts and public health challenges[J]. New South Wales Public Health Bulletin, 2009, 20(2): 19-23.
    [22] LOWELL K, SHAMIR R, SIQUEIRA A. Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat[J]. International Journal of Wildland Fire, 2009, 18(8): 1010-1020.
    [23] ALEXANDER J D, SEAVY N E, RALPH C J, et al. Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou Region of Oregon and California[J]. International Journal of Wildland Fire, 2006, 15(2): 237-245.
    [24] TAYLOR S W, ALEXANDER M E. Science, technology, and human factors in fire danger rating: the Canadian experience[J]. International Journal of Wildland Fire, 2006, 15(1): 121-135.
    [25] NOBLE I R, GILL A M, BARY G A. McArthur’s Fire-danger Meters expressed as equations[J]. Austral Ecology, 1980, 5(2): 201-203.
    [26] PURTON C M. Equations for the McArthur Mark 4 Grassland Fire Danger Meter[R]. Bureau of Meteorology, 1982.
    [27] CHENEY N P, GOULD J S, CATCHPOLE W R. Prediction of fire spread in grasslands[J]. International Journal of Wildland Fire, 1998, 8(1): 1-13.
    [28] FOSBERG M A. Weather in Wildland Fire Management: the Fire Weather Index[R]. US For Serv Reprints of Articles by FS Employees, 1978.
    [29] ROADS J O, UEYOSHI K, CHEN S C, et al. Medium-range fire weather forecasts[J]. International Journal of Wildland Fire, 1991, 1(3): 159-176.
    [30] GOODRICK S L. Modification of the Fosberg Fire Weather Index to include drought[J]. International Journal of Wildland Fire, 2002, 11(4): 205-211.
    [31] SHARPLES J, MCRAE R H, WEBER R O, et al. A simple index for assessing fire danger rating[J]. Environmental Modelling & Software, 2009, 24(6): 764-774.
    [32] ATKINSON D, CHLADIL M, JANSSEN V, et al. Implementation of quantitative bushfire risk analysis in a GIS environment[J]. International Journal of Wildland Fire, 2010, 19(5): 649-658.
    [33] OLSON J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-331.
    [34] SHIELDS B, TOLHURST K. A theoretical framework for wildfire risk assessment[C]. The 3rd International Wildland Fire Conference and Exhibition Incorporating 10th Annual Australasian Fire Authorities Council Conference: Urban and Rural Communities Living in Fire Prone Environment: Managing the Future of Global Problems, 2003: 3-6.
    [35] CHEN K, BLONG R, JACOBSON C. Towards an integrated approach to natural hazards risk assessment using GIS: with reference to bushfires[J]. Journal of Environmental Management, 2003, 31(4): 546-560.
    [36] TURNER B A. The development of disasters–a sequence model for the analysis of the origins of disasters[J]. The Sociological Review, 1976, 24(4): 753-774.
    [37] UNDERWOOD U. Bushfire management in Australian forests—confronting a changing environment[C]. Timber Communities of Australia Conference, 2007.
    [38] HANDMER J, HAYNES K. Community Bushfire Safety[R]. CSIRO Publishing, 2008.
    [39] MCGEE T K. Public engagement in neighbourhood level wildfire mitigation and preparedness: case studies from Canada, the US and Australia[J]. Journal of Environmental Management, 2011, 92(10): 2524-2532.
    [40] HARRIS S, ANDERSON W, KILINC M, et al. The relationship between fire behaviour measures and community loss: an exploratory analysis for developing a bushfire severity scale[J]. Natural Hazards, 2012, 63(2): 391-415.
    [41] CHEN K. Quantifying bushfire penetration into urban areas in Australia[J]. Geophysical Research Letters, 2004(12): 179-206.
    [42] PRESTON B L, BROOKE C, MEASHAM T, et al. Igniting change in local government: lessons learned from a bushfire vulnerability assessment[J]. Mitigation and Adaptation Strategies for Global Change, 2009, 14(3): 251-283.
    [43] FISCHER J, PETERSON G D, GARDNER T A, et al. Integrating resilience thinking and optimisation for conservation[J]. Trends in Ecology & Evolution, 2009, 24(10): 549-554.
    [44] ACT Emergency Services Agency. History of Bushfire – ACT Rural Fire Service[EB/OL]. Australia Canberra: ACT Emergency Services Agency. (2011-09-06)[2014-12-02].
    http://esa.act.gov.au/actrfs/learn-about-us/history-of-bushfires/.
    [45] MEES P. A centenary review of transport planning in Canberra, Australia[J]. Progress in Planning, 2014, 87: 1-32.
    [46] ACT Government. Draft Act Strategic Bushfire Management Plan 2014[R]. Canberra, Australia, 2014.[47] HENNESSY K, BATHOLS C, SUPPIAH R, et al. Climate Change Impacts on Fire-weather in South-east Australia[R]. Climate Impacts Group, CSIRO Atmospheric Research and the Australian Government Bureau of Meteorology, Aspendale, 2005.
    [48] AECOM Australia. Human Settlement Vulnerability and Adaptive Capacity Assessment: Spatial Plan Evaluation[R]. Canberra, Australia, 2010.
    [49] STUDDERT M. Forward[J]. Australian Journal of Emergency Management, 2009, 24(2): 2.
    [50] ACT Planning and Land Authority. The Canberra Spatial Plan[R]. Canberra, Australia, 2004.
    [51] OWNED C, LAND C. Bushfire Management Strategy for Council Owned and Controlled Land[R]. AVK Environmental Management, 2011.
    [52] LI S, DAVIDSON R A. Parametric study of urban fire spread using an urban fire simulation model with fire department suppression[J]. Fire Safety Journal, 2013, 61: 217-225.
    [53] 黄维章, 张锁春, 雷光耀. 城市火灾蔓延的数学模型和计算机模拟[J]. 计算物理, 1993, 10(1): 9-19.
    [54] ZHAO Z D, YU S Z, ZHONG J R. Probability model for hazard analysis of post-earthquake fire occurrence and spread among buildings[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(4): 183-187.
    [55] HIMOTO K, TANAKA T. A physically-based model for urban fire spread[J]. Fire Safety Science, 2003, 7: 129-140.
    [56] HIMOTO K, TANAKA K. Development and validation of a physics-based urban fire spread model[J]. Fire Safety Journal, 2008, 43(7): 477-494.
    [57] ZHAO S. GisFFE–an integrated software system for the dynamic simulation of fires following an earthquake based on GIS[J]. Fire Safety Journal, 2010, 45(2): 83-97.
    [58] 赵思健, 熊利亚, 任爱珠. 基于GIS 的城市特大火灾蔓延模拟[J]. 火灾科学, 2006, 15(3): 128-137.
    [59] 许建东, 王新茹, 林建. 基于GIS 的城市地震次生火灾蔓延初步研究——以福州市区为例[J]. 地震地质, 2002, 24(3): 445-451.
    [60] 谢旭阳, 任爱珠, 刘铁民. 基于GIS 的地震次生火灾蔓延范围模拟[J]. 国安全科学学报, 2005, 15(5): 3-7.
    [61] 国艳, 韩绍欣. 地震次生火灾蔓延模型在Mapx 上的实现[J]. 东北地震研究, 2007, 23(2): 64-69.
    [62] 王碧君. 城市地质次生火灾蔓延模型及应急疏散模拟分析[D]. 大连理工大学, 2009.
    [63] 刘大鹏. 广州市森林火灾危害程度预测研究[D]. 中南林业科技大学, 2007.
    [64] 彭晨. 消防响应时间统计规律及其与城市火灾规模相关性研究[D]. 中国科学技术大学, 2010.
    [65] 张诚. 基于Box-Cox 变换的城市火灾起数的模型研究[D]. 合肥工业大学, 2013.
    [66] 李炳华. 基于模糊信息优化处理的城市火灾风险分析方法研究[D]. 中国科学技术大学, 2010.
    [67] WANG Jian, LI Shuangge. Time-clustering behaviors of urban fires[J]. Procedia Engineering, 2014, 71: 214-219.
    [68] WANG J H, SUN J H, LO S M, et al. Statistical analysis on the temporalspatial characteristics of urban fires under typical urbanization features[J]. Procedia Engineering, 2011, 11: 437-444.
    [69] 郑双忠. 城市火灾风险评估的研究[D]. 东北大学, 2003.
    [70] 张一先, 王建平, 方宗堂, 董雪芳. 城市定量火灾安全评估方法[J]. 苏州科技学院学报(工程技术版), 2003, 16(4): 27-32.
    [71] 刘梅, 刘军. 北京市火灾风险综合评估指标体系研究[J]. 消费技术与产品信息, 2007(7): 11-14.
    [72] WU X T, WU L P. Evaluation of the fire emergency rescue capability in urban community[J]. Procedia Engineering, 2011(11): 536-540.
    [73] 张昌文, 夏成华, 钟少波. 城市火灾风险区划中的GIS 应用框架[J]. 消防管理研究, 2012, 31(11): 1233-1237.
    [74] 席洪林. 基于模糊模式识别的城市火灾综合风险评价研究[D]. 天津大学, 2011.
    [75] CHENG L, LI S, MA L, et al. Fire spread simulation using GIS: aiming at urban natural gas pipeline[J]. Safety Science, 2015, 75: 23-35.
    [76] TONG S, WU Z, WANG R, et al. Fire risk study of long-distance oil and gas pipeline based on QRA[J]. Procedia Engineering, 2016, 135: 368-374.
    [77] WU A, SHI S, LI R, et al. City fire risk analysis based on coupling fault tree method and triangle fuzzy theory[J]. Procedia Engineering, 2014, 84: 204-212.
    [78] JI J, GAO Z H, FAN C G, et al. Large eddy simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2013, 66: 531-542.
    [79] LIU X, ZHANG Q, XU X. Petrochemical plant multi-objective and multistage fire emergency management technology system based on the fire risk prediction[J]. Procedia Engineering, 2013, 62: 1104-1111.
    [80] 刘铁民, 张兴凯, 刘功智. 安全评价方法应用指南[M]. 北京: 化学工业出版社, 2005.
    [81] 徐波. 城市防灾减灾规划研究[D]. 同济大学, 2007.
    [82] 郑荣虎. 城市区域火灾易损性评估研究[D]. 江苏大学, 2012.
    [83] ZHANG Y. Analysis on comprehensive risk assessment for urban fire: the case of Haikou City[J]. Procedia Engineering, 2013, 52: 618-623.
    [84] 皇甫玥, 张京祥, 陆枭麟. 城市规划与城市灾害及其防治[J]. 国际城市规划, 2009, 24(5): 51-55.

TOP 10